Experimental Study and Comparison of Imbalance Ensemble Classifiers with Dynamic Selection Strategy
نویسندگان
چکیده
منابع مشابه
Ensemble Feature Selection with Dynamic Integration of Classifiers
Recent research has proved the benefits of the use of ensembles of classifiers for classification problems. Ensembles of classifiers can be constructed by a number of methods manipulating the training set with the purpose of creating a set of diverse and accurate base classifiers. One way to manipulate the training set for construction of the base classifiers is to apply feature selection. In t...
متن کاملa comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولOnline pruning of base classifiers for Dynamic Ensemble Selection
Dynamic Ensemble Selection (DES) techniques aim to select only the most competent classifiers for the classification of each test sample. The key issue in DES is how to estimate the competence of classifiers for the classification of each new test sample. Most DES techniques estimate the competence of classifiers using a given criterion over the set of nearest neighbors of the test sample in th...
متن کاملA dynamic model selection strategy for support vector machine classifiers
The Support Vector Machine (SVM) is a very powerful technique for general pattern recognition purposes but its efficiency in practice relies on the optimal selection of hyper-parameters. A naïve or ad hoc choice of values for these can lead to poor performance in terms of generalization error and high complexity of the parameterized models obtained in terms of the number of support vectors iden...
متن کاملAn Ensemble of Classifiers with Genetic Algorithm Based Feature Selection
Different data classification algorithms have been developed and applied in various areas to analyze and extract valuable information and patterns from large datasets with noise and missing values. However, none of them could consistently perform well over all datasets. To this end, ensemble methods have been suggested as the promising measures. This paper proposes a novel hybrid algorithm, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Entropy
سال: 2021
ISSN: 1099-4300
DOI: 10.3390/e23070822